TV SYSTEMS
    This article is about television technology. For the Canadian term used for a type of minor television network, see television system.
    Broadcast television systems are encoding or formatting standards for the transmission and reception of terrestrial television signals. There were three main analog television systems in use around the world until the late 2010s (expected): NTSC, PAL, and SECAM. Now in digital television (DTV), there are four main systems in use around the world: ATSC, DVB, ISDB and DTMB.
Analog television systems:
    All but one analog television system began as black-and-white systems. Each country, faced with local political, technical, and economic issues, adopted a color television system which was grafted onto an existing monochrome system, using gaps in the video spectrum (explained below) to allow color transmission information to fit in the existing channels allotted. The grafting of the color transmission standards onto existing monochrome systems permitted existing monochrome television receivers predating the changeover to color television to continue to be operated as monochrome television. Because of this compatibility requirement, color standards added a second signal to the basic monochrome signal, which carries the color information. The color information is called chrominance with the symbol C, while the black and white information is called the luminance with the symbol Y. Monochrome television receivers only display the luminance, while color receivers process both signals. Though in theory any monochrome system could be adopted to a color system, in practice some of the original monochrome systems proved impractical to adapt to color and were abandoned when the switch to color broadcasting was made. All countries used one of three color systems: NTSC, PAL, or SECAM.

    All but one analog television system began as black-and-white systems. Each country, faced with local political, technical, and economic issues, adopted a color television system which was grafted onto an existing monochrome system, using gaps in the video spectrum (explained below) to allow color transmission information to fit in the existing channels allotted. The grafting of the color transmission standards onto existing monochrome systems permitted existing monochrome television receivers predating the changeover to color television to continue to be operated as monochrome television. Because of this compatibility requirement, color standards added a second signal to the basic monochrome signal, which carries the color information. The color information is called chrominance with the symbol C, while the black and white information is called the luminance with the symbol Y. Monochrome television receivers only display the luminance, while color receivers process both signals. Though in theory any monochrome system could be adopted to a color system, in practice some of the original monochrome systems proved impractical to adapt to color and were abandoned when the switch to color broadcasting was made. All countries used one of three color systems: NTSC, PAL, or SECAM.
List of analog television systems:

Digital television systems:
The situation with worldwide digital television is much simpler by comparison. Most digital television systems are based on the MPEG transport stream standard, and use the H.262/MPEG-2 Part 2 video codec. They differ significantly in the details of how the transport stream is converted into a broadcast signal, in the video format prior to encoding (or alternatively, after decoding), and in the audio format. This has not prevented the creation of an international standard that includes both major systems, even though they are incompatible in almost every respect.

The two principal digital broadcasting systems are ATSC standards, developed by the Advanced Television Systems Committee and adopted as a standard in most of North America, and DVB-T, the Digital Video Broadcast – Terrestrial system used in most of the rest of the world. DVB-T was designed for format compatibility with existing direct broadcast satellite services in Europe (which use the DVB-S standard, and also sees some use in direct-to-home satellite dish providers in North America), and there is also a DVB-C version for cable television. While the ATSC standard also includes support for satellite and cable television systems, operators of those systems have chosen other technologies (principally DVB-S or proprietary systems for satellite and 256QAM replacing VSB for cable). Japan uses a third system, closely related to DVB-T, called ISDB-T, which is compatible with Brazil's SBTVD. The People's Republic of China has developed a fourth system, named DMB-T/H.


ATSC
Main article: ATSC system
The terrestrial ATSC system (unofficially ATSC-T) uses a proprietary Zenith-developed modulation called 8-VSB; as the name implies, it is a vestigial sideband technique. Essentially, analog VSB is to regular amplitude modulation as 8VSB is to eight-way quadrature amplitude modulation. This system was chosen specifically to provide for maximum spectral compatibility between existing analog TV and new digital stations in the United States' already-crowded television allocations system, although it is inferior to the other digital systems in dealing with multipath interference; however, it is better at dealing with impulse noise which is especially present on the VHF bands that other countries have discontinued from TV use, but are still used in the U.S. There is also no hierarchical modulation. After demodulation and error-correction, the 8-VSB modulation supports a digital data stream of about 19.39 Mbit/s, enough for one high-definition video stream or several standard-definition services. See Digital subchannel: Technical considerations for more information.

On November 17, 2017, the FCC voted 3-2 in favor of authorizing voluntary deployments of ATSC 3.0, which was designed as the successor to the original ATSC "1.0", and issued a Report and Order to that effect. Full-power stations will be required to maintain a simulcast of their channels on an ATSC 1.0-compatible signal if they decide to deploy an ATSC 3.0 service.[3]

On cable, ATSC usually uses 256QAM, although some use 16VSB. Both of these double the throughput to 38.78 Mbit/s within the same 6 MHz bandwidth. ATSC is also used over satellite. While these are logically called ATSC-C and ATSC-S, these terms were never officially defined.

DTMB
Main article: DTMB
DTMB is the digital television broadcasting standard of the People's Republic of China, Hong Kong and Macau. This is a fusion system, which is a compromise of different competing proposing standards from different Chinese Universities, which incorporates elements from DMB-T, ADTB-T and TiMi 3.

DVB[edit]
Main articles: Digital Video Broadcasting, DVB-T, DVB-S, and DVB-C
DVB-T uses coded orthogonal frequency division multiplexing (COFDM), which uses as many as 8000 independent carriers, each transmitting data at a comparatively low rate. This system was designed to provide superior immunity from multipath interference, and has a choice of system variants which allow data rates from 4 MBit/s up to 24 MBit/s. One US broadcaster, Sinclair Broadcasting, petitioned the Federal Communications Commission to permit the use of COFDM instead of 8-VSB, on the theory that this would improve prospects for digital TV reception by households without outside antennas (a majority in the US), but this request was denied. (However, one US digital station, WNYE-DT in New York, was temporarily converted to COFDM modulation on an emergency basis for datacasting information to emergency services personnel in lower Manhattan in the aftermath of the September 11 terrorist attacks).

DVB-S is the original Digital Video Broadcasting forward error coding and modulation standard for satellite television and dates back to 1995. It is used via satellites serving every continent of the world, including North America. DVB-S is used in both MCPC and SCPC modes for broadcast network feeds, as well as for direct broadcast satellite services like Sky and Freesat in the British Isles, Sky Deutschland and HD+ in Germany and Austria, TNT SAT/FRANSAT and CanalSat in France, Dish Network in the US, and Bell TV in Canada. The MPEG transport stream delivered by DVB-S is mandated as MPEG-2.

DVB-C stands for Digital Video Broadcasting - Cable and it is the DVB European consortium standard for the broadcast transmission of digital television over cable. This system transmits an MPEG-2 family digital audio/video stream, using a QAM modulation with channel coding.

ISDB
ISDB is very similar to DVB, however it is broken into 13 subchannels. Twelve are used for TV, while the last serves either as a guard band, or for the 1seg (ISDB-H) service. Like the other DTV systems, the ISDB types differ mainly in the modulations used, due to the requirements of different frequency bands. The 12 GHz band ISDB-S uses PSK modulation, 2.6 GHz band digital sound broadcasting uses CDM and ISDB-T (in VHF and/or UHF band) uses COFDM with PSK/QAM. It was developed in Japan with MPEG-2, and is now used in Brazil with MPEG-4. Unlike other digital broadcast systems, ISDB includes digital rights management to restrict recording of programming.